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Abstract – 
The preservation of highway infrastructure is 

essential for maintaining its capacity, safety, and 
efficiency for commerce and defense. Pavements are 
among the most important elements of highway 
systems that deteriorate over time. Hence, the goal of 
pavement asset management is to seek efficient 
investments where the methods applied will aid in 
identifying the most appropriate allocation of the 
resources available to the highway agencies. In the 
absence of unlimited resources, such decisions will 
always result in trade-offs in which funding certain 
assets will be needed at the expense of the other. 
Decision-makers need data-driven information 
regarding trade-offs to avoid the reactive solutions 
that are far from optimum and may be counter-
productive over the long run. This paper proposes 
using a multi-objective predictive maintenance 
optimization framework using a non-dominated 
sorting multi-objective evolutionary algorithm 
(MOEA), for the optimum upkeep of pavements. The 
algorithm aims to find a spread of Pareto-optimal 
solutions by concurrently minimizing the life cycle 
cost and maximizing the level of service (LOS). A case 
study was developed to compare the model’s 
effectiveness based on the maintenance data from the 
asset management plan of the California department 
of transportation. The results from the study will help 
develop promising techniques for the application of 
various multi-objective optimization systems and thus 
pave the way for efficient decision-making tools for 
the maintenance of highway infrastructure projects. 
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1 Introduction 
Pavement systems constitute one of the most valuable 

assets in all transportation agencies worldwide. Huge 
investments are made annually to preserve, expand, and 

operate these facilities, which are invaluable for the 
movement of people, services, and goods. Driving on 
roads that need repair costs U.S. motorists $120.5 billion 
in extra motor vehicle repairs and operating costs. The 
Federal Highway Administration (FHWA) estimates that 
each dollar spent on the road, bridge, and highway 
upgrade returns $5.20 in the form of lower vehicular 
upkeep and maintenance costs, time savings, lower fuel 
consumption, safety, minimized bridge upkeep costs, and 
lower emissions as a consequence of enhanced traffic 
flow [1]. 

Pavement maintenance is essential for extending the 
service life of deteriorating highway assets. The 
deterioration of the pavement surface due to aging and 
extensive use is the main threat to the level of service 
provided by the highway system networks. Thus, 
transportation agencies endeavor to renew, repair, and 
maintain the transportation systems already in place [2]. 
With the advancement of technology, highway officials 
and maintenance managers have the opportunity to 
analyze both the short- and long-term consequences of 
the maintenance strategies. Utilizing the maintenance 
strategies to extend the service life of highway systems 
reduces the frequency of infrastructure replacement and 
life cycle costs [3]. 

The funding allocated for maintenance, repair, and 
rehabilitation is always limited. Therefore, it is necessary 
to prioritize and select the options that are best aligned 
with the asset managing organization’s objectives, 
which, in the case of infrastructure, should also reflect the 
needs of society. The criteria used in this process are 
often unclear, conflicting, and sometimes subjective, 
including the type of maintenance intervention, risk and 
reliability, overall network performance, life cycle costs, 
desired level of service, budgetary concerns, and 
construction and social costs [4]. To achieve the best 
results at both individual and overall system levels, an 
optimal scheme for fund allocation to individual assets 
needs to be identified. This necessitates the simultaneous 
optimization of more than one objective while satisfying 
all of the necessary constraints [5]. 

Asset management encourages considering the trade-
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offs between deferred maintenance and sustaining 
current pavement conditions and between short-term 
fixes and long-term solutions [6]. A well-developed 
model will enable maintenance managers to consider the 
impact of selecting one maintenance policy over another. 
Interventions applied too soon may add little incremental 
benefit. On the other hand, interventions applied too late 
may likely be ineffective [7]. It is hypothesized that there 
is a certain optimal level of performance in between these 
two extremes of profligacy and parsimony at which the 
intervention would yield maximum cost-effectiveness 
[8]. 

The main objectives of the study are to (1) develop a 
maintenance optimization framework using a non-
dominated multi-objective evolutionary algorithm, non-
dominated sorting genetic algorithm II (NSGA-II) and 
(2) develop an optimization framework that not only 
minimizes the cost over the lifespan of the highway 
assets but also maximizes the performance. 

2 Literature Review 
Asset Management. Highway asset management aims 

to secure and expand physical highway asset items 
belonging to transport facilities and sustain a certain level 
of service for its users. Researchers have proposed 
several optimization techniques to achieve optimal fund 
allocation for highway asset maintenance over the last 
two decades. [9] used an empirical index to combine 
seven project-level objectives using priority weights. 
[10] solved the single-objective budget allocation 
problem using priority weights of several assets based on 
the prevailing conditions. [11] developed a multi-asset 
optimization of roadway asset maintenance.  

Multi-objective Optimization. Multi-objective 
optimization (MOO) algorithms are used for handling 
trade-offs among various objectives. Every multi-
objective problem is unique and has the ability to 
incorporate various user preferences. It can thus prove to 
be an effective and versatile tool for decision making and 
can be used by highway agencies while allowing quick 
evaluation of several competing alternatives and 
performing a trade-off analysis [12]. Advanced 
methodologies based on a MOO formulation treat all the 
performance measures as additional merit objective 
functions that are not restrictive. As a result, the 
performance-based maintenance management 
methodologies lead to a group of non-dominated 
solutions, each of which represents a unique, optimized 
trade-off between a large set of alternative solutions. 

In the past decade, a number of earnest attempts have 
been made to carry out the MOO for the purpose of asset 
management. [13] developed a cross-asset trade-off 
analysis based on multiple criteria for long-term highway 
investment. [14] developed a MOO method for bridge-

management investment decision analysis using utility 
theory. 

Life Cycle Cost Analysis (LCCA). LCCA arranges for 
a framework to specify the projected total incremental 
cost of constructing, using, developing, and retiring a 
specific infrastructure project. The six phases in a 
product’s life are: need recognition, design development, 
production, distribution, use, and disposal [15]. LCCA 
enables the pavement engineers to conduct a 
comprehensive assessment of long-term costs, and 
ideally, agency highway funding can be allocated more 
optimally. LCCA is applied in road construction to 
explore the possibility of more efficient investment. 
LCCA evaluates not only the initial construction cost of 
the pavement but also all the associated maintenance 
costs during its service life. Therefore, pavement 
engineers can choose the pavement type and design with 
the lowest cost in the long run [16]. 

Previously, [17] proposed best value award 
algorithms over low-bid initial costs to choose the 
pavements. [18] evaluated LCCA practices in the 
Michigan DOT. 

Level of service (LOS). The LOS concept was first 
proposed in the Highway Capacity Manual (HCM) of 
version 1965 [19] and then defined by the six levels in 
relation to a number of traffic conditions in the HCM of 
version 1985 [20]. The current concept of LOS is applied 
in a six-level scale (levels of service A-F) that are 
distinguished in the current HCM by traffic density-the 
sole criterion used to differentiate between LOS A, LOS 
B, and LOS C and so on [21]. These measures of LOS 
used there such as traffic density and traffic flow rate are 
not the LOS itself but merely characteristics of traffic 
conditions. 

[22] provided a framework to develop tools to reflect 
road user perception on service quality by defining the 
quality of service as a function of five performance 
measures- mobility, perception, of the lack of safety, 
environment, comfort and convenience, and road user 
direct cost. [23] determined motorists’ views on what 
aspects of freeway travel are important to them and 
identified: travel time, density/maneuverability, road 
safety, and travel information were the most important 
factors. 

3 Method 
The primary objective of the proposed model is to 

minimize the maintenance cost throughout the life cycle 
of the pavement (LCC) and maximize the level of service 
(LOS) of the infrastructure. The decision variables are 
the type of maintenance strategies as shown in Table 2, 
and the optimization problem has two objectives of LCC 
and LOS. With this, we established a multi-objective 
optimization model that will be further discussed in the 
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next section.  Since the study targets optimizing two 
objectives simultaneously, the research adopted a 
quantitative approach to investigate the benefits using a 
multi-objective optimization technique (MOO) for 
predictive maintenance. It must be acknowledged that the 
intent of the two objectives are incompatible with each 
other. Therefore, they are incorporated into the MOO 
algorithm to generate a set of Pareto optimal solutions 
that are consistent with the performance goals and 
resource constraints in a best-suited way while focusing 
on delivering the best possible results. 

A heuristic non-dominated sorting-based multi-
objective EA (MOEA), called non-dominated sorting 
genetic algorithm II (NSGA-II) is deployed. It considers 
a sustainable assessment of predictive maintenance 
alternatives and aims to improve the allocation of 
maintenance resources. NSGA-II has a fast-non-
dominated sorting approach with 𝑂𝑂(𝑀𝑀𝑁𝑁2) 
computational complexity (where M is the number of 
objectives and N is the population size). Additionally, 
NSGA-II has a non-elitism approach and does not require 
specifying a sharing parameter that helps it find a diverse 
set of solutions and converge near the true Pareto-optimal 
set. 

3.1 Genetic Algorithms for MOO 
The Genetic Algorithms (GA’s) are a type of heuristic 

algorithms that follow the survival of the fittest principle 
and are formulated loosely based on the Darwinian 
evolution. The search procedure of GAs involves 
generating an initial pool of feasible solutions that is 
generated randomly to form a parent solution pool, this is 
followed by obtaining new solutions and creating new 
parent pools through the iterative process. The entire 
iteration process consists of copying, modifying, and 
exchanging parts of the genetic representation in a pattern 
similar to the natural genetic evolution. 

The solutions generated in the parent pool are 
evaluated by means of the objective function. The fitness 
value of each solution is used to determine its potential 
contribution to the generation of new solutions known as 
offspring. The next parent pool is formed by selection of 
the fittest offspring based on their fitness. The process is 
allowed to continue and repeat itself until the pre-
determined stopping criterion is met based on the number 
of iterations or the magnitude of improvement of the 
generated solution [24]. 

3.2 Concept of Pareto Solutions 
In the evaluation of a pool of solutions in the multi-

objective genetic algorithm (MOGA), is a 2-D curve (for 
two-objective optimization) or a 3-D surface (for three or 
more multi-objective problems) which is composed of all 
the non-dominated solutions. This curve or surface is 

known as the Pareto frontier. Each set of Pareto-optimal 
solutions represents a trade-off among different 
objectives. The Genetic Algorithm optimization process 
looks to produce new solutions that can give an improved 
frontier that dominates the existing frontier. A solution, 
in which a value of at least one objective is better than 
the rest of the solutions is known as a non-dominated 
solution. This process of producing new solutions 
repeatedly continues until a set of globally non-
dominated solutions is found. This globally non-
dominated set of solutions is called Pareto optimal set 
and defines the Pareto optimal front [25]. 

3.3 Optimization Objectives 
The desired MOO model comprises two objectives 

which form the optimization algorithm in the model 
development. The two objectives consist of minimizing 
(1) Life-Cycle Cost (LCC), and maximizing (2) Level of 
Service (LOS). 

3.3.1 Life-Cycle Cost 

The total expected costs during the lifetime of a 
highway, as adopted from [26] is given as: 

 
𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶                          (1) 

 

Where 𝐶𝐶𝐶𝐶𝐶𝐶 is the initial cost of construction, 𝐶𝐶𝐶𝐶𝐶𝐶 is 
the expected cost of maintenance, Cins is the expected 
cost of inspections, and Cf is the expected failure cost—
assuming the occurrence of the hazard (e.g., flood, 
earthquake). In the formulation of this research study, 
𝐶𝐶𝐶𝐶𝐶𝐶 is taken as 0 as the research concentrates on 
maintenance, not on construction. Additionally, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 
𝐶𝐶𝐶𝐶 are also excluded to simplify the problem as they are 
constants. 

Cost of predictive maintenance is calculated as: 
 

𝐶𝐶𝑝𝑝𝑝𝑝 =  ∑40
𝑖𝑖=1 ∑3

𝑗𝑗=0 𝑀𝑀𝑖𝑖𝑖𝑖   (2) 
 

𝐶𝐶𝐶𝐶𝐶𝐶 = cost of predictive maintenance 
𝑖𝑖 = number of years (from 1 to 40), 𝑗𝑗 = maintenance types 
0, 1, 2, and 3. 
𝑀𝑀 = cost of maintenance associated with maintenance 
activity for each year. 

The total cost is calculated in terms of Present Value 
(PV), the formula for which as adopted from [27] is: 

 
𝑃𝑃𝑃𝑃 = 𝐹𝐹𝐹𝐹[ 1

(1+𝑟𝑟)𝑛𝑛
]                          (3) 

 
Where, PV = present value, FV = future value, r = 

discount rate =3%, n = 𝑛𝑛𝑡𝑡ℎ year. 
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3.3.2 Level of Service 

The level of service concept in the Highway Capacity 
Manual (HCM) is used as a qualitative measure 
representing freeway operational conditions. Many 
different quantifiable performance measures are 
currently included in the FHWA Highway Planning and 
Monitoring Systems (HPMS) database to determine the 
pavement level of service. In this study, Pavement 
Condition Rating (PCR) is used to quantify performance 
of the pavement. The PCR is a composite index (marked 
on a scale of 0 to 100) derived from monitoring data- 
pavement roughness and distress rating. Several studies 
have approached the performance prediction of highways 
assets [28]. In this study the performance prediction 
equation for flexible pavement as adapted from [29] is 
presented by the equation: 

 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 90− 𝑎𝑎[𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝐴𝐴𝐴𝐴𝑒𝑒𝑏𝑏)  − 1]𝑙𝑙𝑙𝑙𝑙𝑙 [
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐] (4) 

 

Where, 

a = 0.6349; b = 0.4203; c = 2.7062 
𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = pavement condition rating at time t (in 

years). 
 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = traffic volume and weight, which are 

expressed in terms of yearly equivalent single-axle loads. 
 𝑆𝑆𝑆𝑆𝑆𝑆 = Strength and condition of pavement structure 

represented by modified structural number. 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = � 𝑎𝑎𝑎𝑎ℎ𝑖𝑖 + 𝑆𝑆𝑆𝑆𝑆𝑆 
(5) 

 

Where, 
 𝑎𝑎𝑎𝑎 = material layer coefficients, 
 ℎ𝑖𝑖 = layer thickness (in.), 
𝑆𝑆𝑆𝑆𝑆𝑆 = subgrade contribution, and = 3.51 log CBR – 

0.85 (𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝐶𝐶)2 – 1.43 𝑅𝑅2 = 0.75 
CBR= California bearing ratio of subgrade (percent) 

3.4 Model Implementation 
A graphical representation of the step-by-step 

procedure for the algorithm’s functionality is shown in 
Figure 1. 

3.4.1 Mathematical Formulation of the Model 

In this formulation, the pavement condition is 
considered as a representative of LOS for the highway, 
which is depicted in terms of PCR which is an ASTM 
standard for the pavement condition assessment. PCR 
values are allotted to a scale that ranges from 0 to 100. 
The PCR for a pavement section at any given time t is 

computed as follows: 

 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 90− 𝑎𝑎[𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝐴𝐴𝐴𝐴𝑒𝑒𝑏𝑏)  − 1]𝑙𝑙𝑙𝑙𝑙𝑙 [
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐] (6) 

 

The PCR varies from 100 for a perfect pavement 
condition to 0 for a near failing condition. The 
optimization model can be represented mathematically as 
the following equations: 

Objective functions: 
1. Maximize the average PCR over the design life 

of the pavement:  
Maximize ∑𝑁𝑁

𝑡𝑡=1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃/𝑁𝑁 
2. Minimize the maintenance cost 

Minimize ∑𝑁𝑁
𝑗𝑗=1 𝐶𝐶𝐶𝐶 

Subjected to: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≥ α1   j = 1, 2, N 

Where, 𝑁𝑁 = total number of years = 40; 𝐶𝐶𝐶𝐶 = 
maintenance cost for pavement section j;  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 signifies 
the PCR of the pavement section at time t; and α1 is the 
minimum pavement condition threshold for the 
pavement section (set at 40).  

 
Figure 1. Genetic Algorithm Analysis for Multi-
Objective Optimization. 

Solution to the objective functions mentioned above 
will provide a family of Pareto optimal solutions. Each 
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solution gives the optimal maintenance program and the 
resultant amount of maintenance cost for corresponding 
values of average PCR. 

4 Result and Discussion  

4.1 Application of the model on a Case Study 
The developed framework for determining optimal 

PM technique for the maximum LOS and minimum LCC 
is illustrated using a case study involving a section of the 
California Department of Transportation Asset 
Management Plan (TAMP). The data presented below is 
adapted from table 4-2 of the California Transportation 
Asset Management Plan- Fiscal Years 2017/18-2026/27, 
published in January 2018. The table below depicts a 
typical example of life cycle treatments (for a 40-year 
design) for pavements of class I in average climate 
conditions.  

Table 1. Data depicting types of maintenance, schedule 
and cost in $/lane mile adopted from [30] 

Treatment Schedule 
(Years) 

Cost 
($/lane 
mile) 

Present 
Value 
($/lane 
mile) 

Seal surface 4 6000 5129 

Thin mill & 
overlay 

8 152000 111065 

Seal surface 12 6000 3748 

Thin mill & 
overlay 

16 152000 81154 

Seal surface 20 6000 2738 

Thin mill & 
overlay 

24 152000 59298 

Seal surface 28 6000 2001 

Thin mill & 
overlay 

32 170000 48460 

Dig-out, crack seal, 
& seal surface 

36 76000 18519 

Medium overlay 40 325000 67690 

Net Present Value $399,806 

 

Here, the three major types of maintenance activities 
are: 1) seal surface, 2) thin mill & overlay, and 3) dig-
out, crack seal, and seal surface. The schedule of the type 
of maintenance activity to be performed is pre-
determined on certain interval of years. Furthermore, the 
cost involved with each kind of maintenance activity is 
defined in terms of cost $/lane mile. The total net present 

value for the entire 40 years of design life of the 
pavement system sums up to $399,806 per lane mile. 

Table 2. Data for the case study adopted from [31] 

Maintenance Treatment Gain 
in 

PCR 

Budget 
($) 

M0 None 0 0 
M1 Seal surface 10 6000 
M2 Thin mill/Overlay 35 152000 
M3 Dig-out, crack 

seal, seal surface 
20 76000 

 
The data depicted in table 2 is applied to the GA 

NSGAII MOO algorithm. The maintenance activities, 
treatment type, and cost is obtained from California 
TAMP (2018). The algorithm was programmed to run 
10,000 times. The minimum performance threshold of 40 
PCR was selected. The results obtained after the 
accomplishment of the stopping criteria were imported 
into a matrix format, and all the feasible, non-dominated 
optimized solutions were printed. Moreover, to better 
illustrate the solutions, graphs are plotted for each 
solution, Table 3 and Figure 2 illustrate the various 
solutions and graphs. 

Table 3. Depiction of the various solution sets (S1 to 
S16) for 40 years of maintenance 
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Figure 2. Graph for the S1 solution 

Figure 2, gives the graphical representation of the 
solution 1 (S1) obtained from the algorithm. Similar plots 
could be made for solution S2 to S16. Each set of the 
solution gives information about the maintenance activity 
carried out for a time span of 40 years, under the 
constraint that at no point of time, the average PCR value 
dropped below 40. Every set of solution gives detailed 
data for the gain in value of PCR for the pavement each 
year, from this data the type of maintenance activity 
carried out each year can also be found out. The cost is 
calculated on the basis of net present value (NPV) and 
depicted (rounded off) to the nearest $10,000 value at the 
bottom of Table 3. Depicted in Fig. 3 is a graphical 
representation of the Pareto set of solutions obtained. 
 

 

Figure 3. Pareto front obtained via the convergence of 
the two objectives. 

The Pareto set of non-dominated feasible solutions 
for the two objectives contained 16 set of solutions. The 
Pareto front obtained covers a vast range of PCR values 
along with a range of costs associated with them. The 
range of PCR varies from 73 (lowest) to an excellent 

value of 90 (i.e. the highest). Subsequently, the costs 
associated with the various sets of maintenance solutions 
range from $73,196 to $1,287,603 in terms of present 
value for a total span of forty years. 

A brief comparative summary for the results of the 
case study has been depicted below in table 4. 

Table 4. Summary of the case study result 

Metrics Optimized 
Solution 

Caltrans 
Report 

Total Solutions 16 1 

Time-frame 40 40 

Constraint 1 (min PCR 40) None 

Objectives 2 1 

Test run for algorithm 1000 N/A 

Minimum cost (NPV) $73196 with 
PCR of 73 

$399806 

Maximum cost (NPV) $1287603 with 
PCR of 90 

Unknown 

Total 9/16 optimized solutions outperformed the 
Caltrans estimations in terms of $ cost 

4.2 Sensitivity Analysis 
A sensitivity analysis is conducted by altering the 

values of benefits in the value of PCR for the various 
maintenance interventions. The range of the benefits in 
terms of PCR is associated with the different 
maintenance types. The types of distress, treatment, and 
the budget associated with the interventions are 
explained in table 1 and table 2 of section 4.1 in this 
research study. The range of the PCR that was taken is 
depicted in Table 5: 

Table 5. Maintenance type (M1, M2, & M3) PCR 
ranges for sensitivity analysis adopted from [33] 

M1 (PCR) M2 (PCR) M3 (PCR) 
8 36 18 

12 38 22 
  25 

   
The algorithm was run for 10,000 times at a 

minimum threshold of a PCR equal to 40  throughout for 
40 years. The minimum PCR refers to a threshold defined 
by a decision maker and represents a level of service that 
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is considered acceptable to a transportation agency. In 
future, the decision makers can set a different threshold 
value for the PCR and the model can provide an 
alternative set of optimized solutions. The results 
obtained were put into a .CSV file and a graph was 
plotted using Microsoft Excel 2016. The various 
combinations associated with the maintenance types and 
benefits in PCR have been depicted in the figure 4 below. 

 
Figure 4. Sensitivity analysis of the Pareto front  

It is observable that a wide range of Pareto optimal 
front is obtained with the various combinations of the 
benefits in PCR associated with the maintenance types. 
Through the analysis, it was obvious that a trend 
followed, that gave better convergence of the Pareto-
front with increase in the values of the benefits in the 
PCR. The minimum value of PCR observed is 63 while 
the maximum value soared at 90. The minimum cost in 
terms of NPV was observed to be $80,447 while the 
maximum value NPV was documented as $1325882. 

5 Conclusion 
The results suggest that the MOEA NSGA-II is 

capable of tracking the overall pavement performance as 
well as the maintenance costs much more efficiently as 
compared to the conventional maintenance techniques. 

The algorithm is tested for its effectiveness with the 
help of data from California Department of 
Transportation Asset Management Plan. The real data 
was fit into the model and the program was run for 10000 
times to test for solutions that can be compared with the 
data from the Caltrans report. Based on the constraints 
and limitations, 16 feasible, non-dominated, optimized 
solutions were generated on the Pareto-front. The Pareto-
front covers a large range of PCR values ranging from 73 
to 90 and costs ranging from $73,196 to $1,287,603 
respectively. Overall, 9 solutions are obtained across the 
Pareto front that outperformed the Caltrans estimation for 
LCC on the basis of cost alone. Moreover, the PCR value 

in the optimization model has a lower limit constraint for 
average PCR at 40, while there is no data available on the 
level of service for the pavement condition in the 
Caltrans data.  

In conclusion, the solutions obtained from the 
MOO are far superior in comparison with the 
conventional time-based maintenance warrants used by 
the California DOT. The Pareto-front gives a wide range 
of flexibility with the option of trade-offs between the 
two objectives. The pavement is the only asset item that 
is being considered in this research study and its 
formulation whereas in the future, more asset items can 
be incorporated in the algorithm to acquire a more 
holistic approach towards the predictive maintenance 
optimization problem. Moreover, the approach can be 
applied to more research cases in addition to California 
DOT data to test the model and its efficiency. Application 
of the optimization model to a more complex highway 
asset management scenario with the possibility of 
multiple intermediate maintenance actions will give a 
better result that will help in decision-making with 
greater confidence. 
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